IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation
 (716) 872-4503

CIHM/ICMH Microfiche Series.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coioured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
Lareliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenaver possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent cians le texte. mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplérnentaires:

L'Institut a microfilmé le neilleur exemplaire qu'il lui a été possible de se procurer. Les dètails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la methode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagèes
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discolcured, stained or foxed/
Pages décolorées, tachetées ou piquèes
Pages detached/
Pages détachèes

Showthrnugh/
Transparence

Quality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaireOnly editior, avaiiable!
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuiller d'errata, une pelure. etc., ont été filmées à nouveau de facen à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce docuritent est filmé au taux de réduction indiqué ci-dessous.

The last recorded frame on each microfiche shall contain the symbol \Rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:
The copy filmed here has been reproduced thanks to the generosity of:

> Library of the Public Archives of Canada

The images appearing here are the best quality possit le considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

L'exemplaire filmé fut reproduit grâce à la généroslté de:

La bibliothèque des Archives publiques ciu Canada

Les images suivantes ont été reproduites avec le plus grend soin, compte tenu de la condition et de la netteté de !'exemplaire filmé, ot en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniere page qui comporte une empreince d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filinés en commençant par la premiere page qui comporte une empreinte d'impression ou d'illustration et en terminant par la derniere page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction diffférents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant ie nombre d'images nécessaire. Les diagrammes suivents illustrent la méthode.

INCORPORATED 1887.
ADVANCE PROOF-(Suljicet to revision)
N.B.-This Society, as a body, does noc.hold itself responsible for the statements and opinionsalranced in any of its publications.

TRANSITION CURVES.

BI
E. S. M. Lovelace, B.A.Sc.. A.M., Can. Soc. C. E
(To be read Thursday, December 7th, 1899.)
Some years ago the writer published a pamphlet on the "Lemnoscata as a 'Transition Curve," a copy of which is in the possession of the Society. The pamphlet was rather favorably reviewed in the "Railroad Gazette," June 30th, 1893, and in "Engineering News," November ind of the same year, and as a result a good many copies were sold to engineers in different parts of the United States.

As was indicated, however, in the articles in the above-mentioned journals, and as the writer himself realized shortly after the book was printed, the tables given in it were not sufficiently extensive, while the general formulae giving the elements of the proposed curve were perhaps a little too complicated to lend themselves readily to work in the field, and consequently the pamphlet was not as successful! as had been confidently hoped it would be. Before laying before the Society the modified set of formulae which the writer now proposes to use, it may be of interest to look at the simple way in whicis those given in the pamphlet might have been written, but which unfortunately was not discovered until too late.

Referring to the accompanying diagram and calling the distance measured along chord AP
the distance measured along curve ASP
the offset distance HV
$\rightleftharpoons \mathrm{C}$
the radius of main curve $O P$
the deflection angle PAN
$=s$
$=\mathrm{K}$
$=\mathrm{K}$
$=1$
the formulae glen in pamphlet are as follows:-

$$
(1)^{\prime \prime} \sin 2 \prime=\frac{C}{3 k}
$$

$(2)^{\prime \prime} A H=\frac{c}{2}\left(\frac{2+\cos 2 f}{\cos b}\right)$
$(3)^{\prime \prime} O H=\frac{c}{6}\left(\frac{2-\cos 2 t}{\sin \theta}\right)$
$(4)^{\prime \prime} A B=O H \tan \frac{1}{2}+A H$
(5) ${ }^{\prime \prime} s=c+\frac{c^{3}}{90 R^{2}}+\frac{c^{3}}{194!R^{1}}$

In place of the above write:-
$(1)^{\prime} \sin 2 \theta=\frac{c}{3 R}$

(3) $O H=\stackrel{R}{\ddot{2}}\left(3 \cos \theta-\cos 3{ }^{\prime}\right)$
$(4)^{\prime} A B=\begin{aligned} & k \\ & 2\end{aligned} \sec \frac{I}{2}\left[3 \sin \left(\frac{I}{2}+\theta\right)-\sin \left(\frac{I}{2}-3 \theta\right)\right]$
$(5)^{\prime} s=\frac{c}{1-\frac{2}{5} \theta^{2}}=c+\frac{20}{3} \frac{k^{2}}{c}$
(6)' teflection to point distant l along curve from $A=\frac{\prime \prime l^{2}}{s^{2}}$

Equation (4) is the first expression giving the value of A B in one simple formula, which the writer has seen. It can be used to special advaltage when the curves of an existing track are to be eased olt in such a manner that the total length of the track remains the same, and, so, no rails will have to be cut. To insure this, looking at Fig. it will be necessary that:

$$
R^{\prime} \frac{I}{2}+\left[\left(A B-R^{\prime} \tan \frac{I}{2}\right)=S+R\left(\frac{1}{2}-3 H^{H}\right)\right.
$$

where $R^{\prime}=$ radius of existing track
that is $R^{\prime}\left(\begin{array}{l}I \\ 2\end{array}-\tan \frac{I}{2}\right)=s-A B+R\left(\frac{I}{2}-3 \theta\right)$
substituting for S and $A B$, their values given by $(5)^{\prime}$ and $(6)^{\prime}$.

$$
\left.R=\frac{R^{1}\left(\frac{I}{2}-\tan \frac{I}{2}\right)}{\left.\frac{3 \sin 2^{A}}{1-\frac{2}{5} \theta^{2}}-\frac{I}{2} \sec \frac{I}{2}\left[3 \sin \left(\frac{I}{2}+\theta\right)\right)-\sin \left(\frac{I}{2}-3 H\right)\right]+\left[\frac{I}{2}-3 H\right.}\right)
$$

finally, assume a convenient value for H and solve for R.
While this is rather a formidable looking equation to work out,
it ean easily be seen that the 1 st and 2 nd quantities in the denominator muitipiied by R at once give S and $A B$, so that nearly everything for the subsequent layiug out of the eurves is found by the one calculation.

In the spring of 1894 the writer in a letter to the "Editor Engincering News" suggested that the above might be an improvement on those given in the pamphlet, and received a repiy fron the late Mr. A. M. Weilington which is interesting as showing the strong practical grasp ine had of all engineering subjects. He states in inis ietter: "I tiought at first you had this shmplified into an acceptable form, and yon will see intended to pubiishin, but I fear it is stili too complex to make it suitable to lay before engineers as a praeticable and practical method. A suggestion: Forget the lemniscata or any other particnlar curve-Assume a curve in which ASP and $H V$ bisert each other N A $P^{\prime}=A$ T'PA=20 and VP $P^{\prime} V^{\prime \prime}$ is the originai niain curve of any length whatever, and you have something that can be ralled general and proper. Then assume your curve $\mathrm{V}^{\prime} \mathrm{V}^{\prime}$ aiready run, and HV to be assumed at discretion, and work out ail the other elements for laying out the curve either by homologons offsets from tangents and main curve, or by angles from P or A. All this is simple, 1 have done it and used it, but I have no time to put it in shape. Do it, and you will do a good work. less won't do-too complex for no ga.n.

Sigued, A. M. WELLINGTON.

The writer has tried to work out a curve using the assumptions sliggested by Mr. Wellington, but has not on the whole succeeded in obtaining as simple a set of formulae as may be derived from those numbered (1)' to (f)', and which may therefore fairly be called formulae for moslifict limniswttu.

Looking at equation (1)' and remenibering that 20 is always a little greater than $\operatorname{Sin} 2 \theta$ and S a little gro ater than C, within the limits over which A will likely range, the curve represented by (1)' will be very slightly altered by writing:

$$
2 \theta=s^{s}{ }^{3} \text { or } \theta=\frac{s}{6 R} \quad((t)
$$

By equation (3)' $O H=R+K=\frac{R}{2} \quad$ ($3 \cos \theta-\cos 3(3)$
expranding $\cos \theta$ and $\cos 30$ into a series it will be found that

$$
K^{r}=\frac{3}{2} R\left(\theta^{2}-\theta^{4}\right)
$$

as K for modified will always be slightly greater than K for true Lemniscota θ^{\prime} can he discarded and therefore

$$
\theta=\frac{2 k}{3 h} \text { or } \theta=\sqrt{\frac{2}{3 h}}(b)
$$

$$
\begin{align*}
& \text { combine }(a) \text { and }(\beta) \therefore \boldsymbol{K}=\frac{s^{2}}{24 \mu^{\prime}} \quad(c) \\
& \quad \text { combine }(a) \text { and }(c) \therefore \theta=\frac{4 K}{s} \quad(d) \\
& \text { By }(5)^{\prime} e=s-\frac{2}{5} s \theta^{2}=s-\frac{2}{6} s \frac{16 K^{2}}{s^{2}}=s-\frac{32}{5} \frac{K^{2}}{s} \tag{e}
\end{align*}
$$

Looking at diagram - A $H=c \cos \theta-R \sin 3 \theta$

$$
\begin{aligned}
& =c\left(1-\frac{\theta^{2}}{2}\right)-R\left(3 \theta-\frac{9}{2} \theta^{3}\right) \\
& =c\left(1-\frac{8 K^{2}}{s^{2}}\right]-\frac{s}{2}+12 \frac{K^{2}}{s} \text { by }(u) \text { and }(d) \\
& =c-\frac{8 K^{2}}{s}-\frac{s}{2}+12 K^{2}-\text { very nearly } . \\
& =s-\frac{32}{5} \frac{K^{2}}{s}-\frac{8 K^{2}}{s}-\frac{s}{2}+\frac{12 K^{2}}{s^{2}} \text { by }(e) \\
& \therefore \text { A } H=\frac{s}{2}-\frac{5}{2} \frac{K^{2}}{s} \text { (f) }
\end{aligned}
$$

Equation (a) may be written

$$
\frac{\theta}{60,5730}=\frac{s}{6 \frac{5730}{D}}
$$

where θ is the number of minutes contained in the angle, and $\mathrm{D}=$ $\frac{5730}{R}$
That is 0 in minutes $=\frac{S I)}{10}$ a very important formulae, and the one that would likely generally be used in calculating 0 .

The complete set of formulae for modified lemniscata are therefore:
(1) $K=\frac{s^{2}}{24 K}$
(2) $t=\frac{s}{6 R}=\frac{4 K}{s}=\sqrt{\frac{2 K}{3 R}}$
(3) θ in minutes $=\frac{s}{10} \frac{D}{\text { where } D}=\frac{5730}{R}$
(4) $A H=\frac{s}{2}-\frac{5}{2} \frac{K^{2}}{s}$
(5) $c=s-\frac{32}{5} \frac{K^{2}}{s}$
(6) deflection to point distatat I from $. ~ 1=0 \frac{l^{2}}{s^{2}}=\theta^{\prime}$

$$
\begin{array}{lll}
\text { do } & \text { do } & 2 l \\
\text { do }=4 \prime \frac{l^{\prime}}{s^{2}}=4 i^{\prime} \\
\text { do } & \text { do } \quad \mathrm{ll} \text { do } n^{3} b \frac{l^{2}}{y^{2}}=1^{2} i^{\prime}
\end{array}
$$

Wach of the above equations contains three unknown quantities, any two of which may be assumed at wili, so that the curve is extremely flexible and can be made to fulfil aimost any conditions.

The correction ($5_{2}^{5} \frac{K^{2}}{N}$) for the distance A H given in equation (4) need only be used when K is fairly large. It is the want of such a correction that has caused trouble (in the case of high degrees of curve) when the otherwise admirable method (first made known to the Society by Mr. Wicksteed) is ased.
The accuracy of the above formulac can best be illustrated by an example taken at random.

Let $I=102^{\circ}-0^{\prime}$
" $R=410.65$ corresponding to about a 1.1° curve
" $K=27$
by (1) $s^{2}=24 K h$
$\therefore 2 \log s=\log 21+\log K+\log R \quad \therefore s=515.85$
$\therefore \log _{4} 3=2.7123241$
by equation (3) $0^{\prime}=\frac{S D}{10}=\frac{515.85}{10} \frac{6729.58}{410.65}$
$\therefore \log \left(i^{\prime}=\log s+\log 5729.58-\log 4106.5\right.$
$\therefore \log \theta^{\prime}=2.85$ 2 1733
$\therefore \theta=710.736$ minutes $=11^{\circ} 59^{\prime}+4^{\prime \prime}$

$$
\frac{k^{2}}{s}=\frac{27^{2}}{515.85}=1.413
$$

\therefore by (4) $A H=\frac{8}{2}-\frac{5}{2} \frac{K^{2}}{3}=257.925-3.533=254.39$
by (5) $A I^{\prime}=s-\frac{32}{5} \frac{\mathrm{~K}^{2}}{s}=51585-9.0 .1=506.81$
$A B=(I+K) \tan \frac{I}{2}+A I I$
$=437.65 \tan 51^{\circ}+254.39=794.85$

$$
\text { How } A t^{\prime}=2 A B \cos \frac{I}{2}=2,794.85 \cos 5 L^{\circ}-1000.13
$$

$$
\text { but } A A^{\prime} \text { should also }=2\left(A P^{\prime}\left(\cos 6 l^{\prime}-(\prime)+R \sin \left(\frac{1}{2}-3^{\prime \prime}\right)\right)\right.
$$

$$
\begin{aligned}
& =2\left(506.8 i \cos 39^{\circ} 0^{\prime} 16^{\prime \prime}+410.6 i \% \sin 1.5^{\prime} 0^{\prime} 4 s^{\prime \prime}\right) \\
& =2(39384+106.38) \\
& =100044
\end{aligned}
$$

proving that all the equations given above are almost exactly right, and that if chained correctiy the curves would close precisely.
In conclusion the writer would draw attention to a rather peculiar colncidence in connection with the curve represented by the above formulae.
As already mentioned, a short review of the writer's pamphlet was given in "The Raliroad qazette," June 30 th , 893 , while in the same journal's issue of August 4th, 1893 , there appeared an artlcle entitied: "A New Transition Curve,-The Leminiscata," by Charies H. Tutton, Dept. Pubiic Works, Bureau of Englneering, Bu世 alo, N. Y.

Mr. Tutton was unaware that anytling had been contributed on this curve prior to his paper on the subject, but, hearing in November cf the same year that such was not the case, at once wrote, enclosing his own articie and asking for the writer's in exchange.

In his letter acknowledging receipt of this, Mr. Tutton gives some very interesting information in connectlon with his own work in the matter.

He states: "I investigated the curve severai years ago, and wrote quite a letter to Prof. Jamieson over two years ago on it, Immedlately following his series of articles on the Cuble Paraboia in the "American Engineer and Railroad Journal."

Its investigation started from Prof. Airy's article in vol. 1 of Van Nostrand's Magazine for 1867, when a set of tables for the Cubic Paraboia were given.

The close approximation of the deflections to an arithemlcai progression at once struck me, and for a tlme I worked on the idea of developing a curve whose equation sould he written $2 \mathrm{~K} \theta=\mathrm{S}^{2}$ where $\mathrm{K}=$ some constant, or in in piain Engiish one whose deflection angles from the main tangent were in direct aritlimetical progression for equal distances chained atong the curve. This curve contes very close to the lemniscata, but I have never been able to throw it into what you, would term usable shape. Another curve that promised very fair results could be written $2 \mathrm{~K} \tan \theta=s^{2}$ and can be piotted by laying oft the tangents of the angles in arithmetical progression for equal ares.
"I think, altogether, the lemnlscata is the preferable curve for held lise : 6 noy that I know of. I have scen handbooks on traus tiom curves alone that were larger than the enthe fleld book (Henck for instunce) usually carrled by the engineer, and iny experieace is that while in the muititude of connsellors there may be bafety. yet in the miltitudio of tables there is a decided chance of orror. increasing in rather more tham arithmetleal progression."

After making some further comparisons Mr. Tutton conchides: "l am busier now on sewers and pavements than on track yrohleme. bit if you have lelsure 1 have an idea that the development of the curve $2 \mathrm{~K}^{4}=\mathrm{s}^{2}$ might prove interesting, as it, is flatter at the beginning and sharper at the rentre thm the lemniscata."

The colncidence the writer spoke of consists in the fact that thy curve representad by the sbove eqmation is identical with that dealt with in this paper, and called for want of a better iame the "modifled Lemniscata." Thus, Mr. Tutton's foresight 1r, the matter has been, in the writer's opinion. amply dustlfled.

That the two curves are one and the same can easi'v be seen for culling the deflection angle to a point on curve d, and the deflection angle to the print where transition joins main curve $\|^{\prime}$ the corresponding distances along curve, being S and S.

$$
\begin{aligned}
& \text { hy (i) } 0=0^{\prime \prime} s^{\prime 2} \\
& \therefore s^{2}=\frac{s^{\prime 2}}{0^{\prime}} \quad 0=2 K^{\prime} 0 \text { where } 2 K^{\prime}=\frac{s^{\prime 2}}{0^{\prime}}
\end{aligned}
$$

The writer has not touched upon the question of the actual tay.: ing ont the curves in the field, for the reason that this ras been very fully entered into by Mr. Wicksteed and others, whose methods and conclusions apply also to the curve which the writer has attempted to describe.

The only contribution, therefore, that the writer has to offer to the Society is a complete set of properly tabulated general formulae, which will ensure the trunsition and main chrves closing under any and all conditlons.

